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Nonlinear Reformulation of Heisenberg’s Dynamics
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A structural similarity between Classical Mechanics (CM) and Quantum Mechanics
(QM) was revealed by P.A.M. Dirac in terms of Lie Algebras: while in CM the dy-
namics is determined by the Lie algebra of Poisson brackets on the manifold of scalar
fields for classical position/momentum observables Q/P , QM evolves (in Heisenberg’s
picture) according to the formally similar Lie algebra of commutator brackets of the
corresponding operators:

d

dt
Q = {Q, H } d

dt
P = {P,H } versus

d

dt
Q = i

h
[Q, H]−

d

dt
P = i

h
[P, H]−

where QP − PQ = ih. A further common framework for comparing CM and QM is
the category of symplectic manifolds. Other than previous authors, this paper considers
phase space of Heisenberg’s picture, i.e., the manifold of pairs of operator observ-
ables (Q, P) satisfying commutation relation. On a sufficiently high algebraic level
of abstraction—which we believe to be of interest on its own—it turns out that this
approach leads to a truly nonlinear yet Hamiltonian reformulation of QM evolution.

KEY WORDS: quantum mechanics; Heisenberg’s picture; symplectic manifolds;
nonlinear symmetries; integrability.

1. INTRODUCTION

Quantum Mechanics (QM) nowadays is generally accepted as appropriate
for describing very small particles and their physical interactions and was put
into axiomatic form by von Neumann (1932). Since that time, much research has
been spent on structural similarities and differences between QM and Classical
Mechanics (CM). The usual approach is to propose a common mathematical
category where both theories fit into and to then compare the additional axioms
satisfied by either theory. A simple example are the commutation relations among
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Cartesian position/momentum observables:

QP − PQ = 0 in CM, [Q, P]− := QP − PQ
!= ih in QM. (1)

In the category of algebras, classical observables thus form a commutative one
whereas the quantum case becomes commutative only as h tends to 0: one conse-
quence of Bohr’s famous Correspondence Principle.

Another category for comparing CM with QM arises from the respective dy-
namics d

dt
A = {A,H } and d

dt
A = i

h
[A, H]− , where we adopted the Heisenberg

picture that observables A(t) and A(t)—rather than states—evolve with time. Here
{ · , · } denotes the Poisson bracket and [ · , · ]− the Commutator bracket. Since both
brackets satisfy Jacobi’s identity, one arrives at a second common category for
QM and CM: Lie Algebras, cf. (Faddeev, 1996; Landsman, 1991).

The present work adds to these perspectives a further category by propos-
ing to consider Hamiltonian systems in the classical sense, a notion well-known
in CM (Abraham and Marsden, 1978), however on abstract operator manifolds.
Hamiltonian systems have successfully been generalized from finite to infinite di-
mensional manifolds (Chernoff and Marsden, 1974; Choquet-Bruhat et al., 1991)
and proven to be the key to integrability of many difficult nonlinear partial dif-
ferential equations (Zakharov and Faddeev, 1971; Fuchssteiner, 1992a). We recall
that if the generator K of an evolutionary equation

d

dt
u(t) = K(u(t)) (2)

is Hamiltonian as a vector field,3 then conserved quantities relate to symmetries
in the sense of Noether. Thus, in our approach, this relation holds also in case of
QM, thereby adding rich structural properties to QM. Our work proceeds in three
steps:

• We turn the phase space of Heisenberg’s picture into an (infinite dimen-
sional) Banach manifold.

• We consider on this manifold the generator of the Heisenberg dynamics
and regard it as purely algebraic an object.

• We show that this abstract object is a nonlinear Hamiltonian vector field
in a sense similar to symplectic mechanics.

Regarding Noether’s Theorem this yields a new and rather general notion of
symmetry in quantum mechanics (Chaichian and Hagedorn, 1998). Related Work
considered, in order to fit QM into the framework of Hamiltonian systems, the
Schrödinger picture, i.e., an evolution on either the set of vectors (Chernoff and
Marsden, 1974; Kupershmidt, 1985) or on the set of rays (pure states) in a Hilbert

3 Not to be confused with the Hamiltonian operator, i.e., the QM observable for energy. . .



Nonlinear Reformulation of Heisenberg’s Dynamics 695

Space (Heslot, 1985; Cirelli and Pizzocchero, 1990). This, however, leads nec-
essarily to linear dynamics. Heisenberg’s dynamics, restricted to spin space, was
already employed in Fuchssteiner (1992b) to embed the evolution of spin chains
into a Hamiltonian framework. The dynamics focused on in the present work is
again Heisenberg’s but restricted to phase space, i.e., the equation

d

dt

(
Q

P

)
=


i

h
[Q, H]−

i

h
[P, H]−

 =: K(Q, P) (3)

which is assumed to take place on the set M of all tuples (Q, P) of self-adjoint
Hilbert space operators satisfying, in the sense of Weyl, the canonical commu-
tation relation (1). The question then is: In what sense can this in general non-
linear dynamics be considered as a classical Hamiltonian flow? In fact notice
that for instance anharmonic potential H = P2 + Q4 leads to a nonlinear genera-
tor K(Q, P) = (2P,−4Q3). This does not come to surprise as classical Hamilton
equations

d

dt

(
Q

P

)
=
(

{Q,H }
{P,H }

)
=: K(Q,P ) (4)

become nonlinear, too, for H (Q,P ) = P 2 + Q4. Of course (Abraham and
Marsden, 1978), the classical Equation (4) is always Hamiltonian, and our dis-
tant goal is to show that also (3) is a classical Hamiltonian flow, however on a
new manifold of high dimension. Once that aim is reached, then indeed we have
revealed a genuine nonlinear aspect of Quantum mechanics.

Overview. As a first step, Section 3. turns the phase space M into an infinite-
dimensional Banach manifold M. However as Q, P are not both bounded, the
usual subtleties arise (Chernoff and Marsden, 1974): weak versus strong sym-
plectic forms, issues of domains, and so on. We circumvent these difficulties
by considering in Section 4, for Hamiltonian operators that depend polynomi-
ally on phase space variables (such as for example the above H = P2 + Q4), the
induced generator of Heisenberg’s dynamics (3) as purely algebraic an object.
Theorem 4.3, relying on on a result in combinatorial algebra (Ma and Racine,
1990), formally justifies this identification. In fact, Fuchssteiner (1992a) revealed
the basic properties of usual Hamiltonian systems that relate symmetries to con-
served quantities and asserted the complete integrability of so many important
nonlinear flows (Zakharov and Faddeev, 1971; Gardner, 1971; Fuchssteiner et al.,
1997) to be expressible in algebraic terms only, too. Our main result (Section 5)
proves each such abstract generator of Heisenberg’s dynamics to be Hamiltonian
in this generalized algebraic sense. The formal and often technical proofs to most
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claims are collected in Appendix A. But let us start with a brief review of some
basic notions from dynamical systems and differential geometry.

2. MANIFOLDS, FLOWS, AND INTEGRABILITY

The present section contains a short introduction to infinite dimensional man-
ifolds, differential equations thereon, and the impact of Hamiltonian generators
to the integrability of such equations. This presentation closely follows (Choquet-
Bruhat et al., 1991; Fuchssteiner, 1992a).

Definition 2.1. Let E,F denote Banach spaces and U some open subset of E. A
function f : U → F is called differentiable at x ∈ U if there exists a continuous
linear map T = T [·] : E → F such4 that

‖f (x + v) − f (x) − T [v]‖/‖v‖ → 0 as E � v → 0.

In that case, T is unique and denoted T = f ′(x).
More generally, it usually suffices for E,F to be locally convex Haus-

dorff rather than Banach vector spaces and f to be Hadamard-differentiable,
cf. Fuchssteiner (1992a). This allows for a variety of manifolds, e.g., modeled
over the space of rapidly decreasing functions S or equipped with some inductive
limit topology. In fact for the following considerations, the exact notion of differ-
entiability is of minor importance as long as it satisfies properties expressible in
purely algebraic terms:

• chain rule for differentiation of composite functions;
• product rule for differentiation;
• symmetry of second derivatives;
• and (occasionally) the implicit function theorem.

By means of charts, differentiability is then carried over to functions f : M → N
on manifolds M and N modeled over E and F , respectively; see Choquet-
Bruhat et al. (1991). In particular, for a differentiable scalar field H : M → R

and u ∈ M, I ′(u) is a continuous linear mapping from tangential space TuM to
R, i.e., a covector dI (u) = I ′(u) ∈ T ∗

u M, and dI : M → T ∗M a covector field.
For a vector field K : M → T M, M � u �→ K(u) ∈ TuM, consider the

general-type evolutionary equation (2). Its solution t �→ u(t) for given initial
value u(0) is called a flow or integral curve. In the sequel, in order not to obscure
the main ideas by technical details, we shall, for simplicity, assume that K is such
that this solution always exists, is unique, and well-behaved (e.g., Ck). Similarly,
fields are assumed to be smooth enough such that all occurring derivatives make
sense.

4 We adopt the convention that arguments entering linearly are written in square brackets.
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Indeed, the basic properties that lead to infinitely many conserved quantities
and symmetries for (2) are usually stated in purely algebraic terms (Zakharov and
Faddeev, 1971; Fuchssteiner, 1992a)5 and a sound analytical foundation is given
only later by supplying M with a suitable topology. Observe that equations of the
form (2) cover evolving physical systems ranging from simple pendulum

d2

dt2
ϕ + sin ϕ = 0, i.e. M := R2, u := (ϕ, ϕ̇), K(u) := (ϕ̇,− sin ϕ)

up to complicated partial differential equations like the one due to Korteweg and
de Vries describing one-dimensional long water waves u = u(x, t)

∂tu = 6u · ∂xu + ∂3
xu =: K

(
u) (5)

on some suitable manifold of functions in one real variable. Solving the latter used
to be inherently difficult, even numerically, due to its nonlinearity. The celebrated
breakthrough in Zakharov and Faddeev (1971) was to show that (5) possesses
an infinite number of conserved quantities related to symmetries by virtue of
(a variant of) Noether’s theorem.

Definition 2.2. A conserved quantity for (2) is a scalar field I : M → R such
that

dI [K] : M → R, u �→ I ′(u)[K(u)]

is identically 0. A symmetry is a vector field G : M → T M such that the fol-
lowing function vanishes identically:

|| K,G || : M → T M, || K,G ||(u) := G′(u)[K(u)] − K ′(u)[G(u)] (6)

Notice that I is a conserved quantity iff, for each flow t �→ u(t) of (2),
t �→ I (u(t)) remains constant; cf. Proposition 3.4.2 in Abraham and Marsden
(1978). Similarly, G is a symmetry iff the one-parameter groups of flows induced
by K and G, respectively, commute; cf. e.g., Observation 2.2 in Fuchssteiner
(1992a) or Theorem, p. 150 in Choquet-Bruhat et al. (1991). We remark that || ·, · ||
turns the set of vector fields into a Lie Algebra. Indeed, G′[K] − K ′[G] is chart
independent (which, e.g., G′[K] only is not), antisymmetric, and satisfies Jacobi’s
identity (due to chain rule of differentiation and symmetry of second derivatives).

Conserved quantities permit to reduce the dimension of the manifold under
consideration. cf. Exercise 5.2H in Abraham and Marsden (1978) or p. 125 in
Chernoff and Marsden (1974). This explains the notion integrable for systems (2)
that exhibit a complete collection of conserved quantities/symmetries, see Defi-
nition 5.2.20 in Abraham and Marsden (1978). It was therefore quite celebrated
when researchers discovered the famous Korteweg-de Vries Equation (5) to be

5 See also Section 4 of the present work.
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integrable, that is, soluble in a rather explicit and practical sense (Zakharov and
Faddeev, 1971; Marsden and Weinstein, 1974; Fuchssteiner et al., 1997). As we
now know, integrability also applies to a vast number of other important non-
linear partial differential equations such as, e.g., Gardner’s, Burger’s, nonlinear
Schrödinger, and sine Gordon. Furthermore, abstract integrability turned out to be
closely related to Hamiltonian structure (Gardner, 1971; Fuchssteiner, 1992a) in
a purely algebraic sense. One important aspect of this relation is expressed by the
following well-known (variant of a) result due to Emmy Noether:

Meta-Theorem 2.1. Let K denote a Hamiltonian vector field on M. Then, to
every conserved quantity of (2), there corresponds a symmetry.

Here, a vector field K : M → T M is called Hamiltonian if some symplectic
2-form ω : T M × T M → R, identified with ω : T M → T ∗M, maps it (K) to
the gradient of a scalar field6 H : M → R, that is, an exact covector field:

ω ◦ K : M → T ∗M != dH : M → T ∗M; (7)

compare., e.g., p. 12 in Chernoff and Marsden (1974), Definition 5.5.2 in Abraham
and Marsden (1978), or Section VII.A.2 in Choquet-Bruhat et al. (1991). Also
notice that one of the requirements for ω to be symplectic is that at each u ∈ M,
the linear map ω(u) : TuM → T ∗

u M has a continuous inverse. Therefore, K

is uniquely determined by H and ω; more precisely, K = ω−1[dH ] for linear
antisymmetric ω−1(u) : T ∗

u M → TuM.
As was later observed, the proof of Noether’s theorem in fact exploits only

algebraic properties (e.g., symmetry of second derivatives or Jacobi’s identity).
Indeed for K : M → T M, the mappings in Definition 2.2.—LK : I �→ dI [K] on
the set F of scalar fields and LK : G �→ ||K,G || on the set � of vector fields—as
well as their canonical extensions to the set �∗ of covector fields and to tensor fields
of higher rank according to Section III.C.2 in Choquet-Bruhat et al. (1991), are
derivations in the algebraic sense; cf. Proposition, p. 148 in Choquet-Bruhat et al.
(1991). In fact, Section 4 of Fuchssteiner (1992a) and Section 2 of Fuchssteiner
(1993) gradually stripped down the prerequisites of Theorem 2.1 and found it to
holds on a far more abstract level:

Definition 2.3. Let
(
�, || ·, · ||) denote a Lie algebra and F a vector space—called

(abstract) vector and scalar fields, respectively. Suppose that, for each K ∈ �,
LK : F → F is such that K �→ LK is injective and a Lie algebra homomorphism,
i.e., satisfies

LKLG − LGLK = L[[K,G]]. (8)

6 Usually the energy functional associated with the system. . .
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For H ∈ F call the linear map

dH : � → F , K �→ LK (H ) =: dH [K]

a (abstract) gradient or covector field; the set of all of them being denoted by �∗.
Now extend, similarly to Section III.C.2 in Choquet-Bruhat et al. (1991),

Lie derivative LK from scalar to vector and covector fields G ∈ � and dH ∈ �∗,
respectively

LKG := || K,G ||, (LKdH )[G] := LK (dH [G]) − dH [LKG] (9)

and finally to tensors of higher rank; cf. Equation (2.4) in Fuchssteiner (1993). A
linear antisymmetric mapping � : �∗ → �, is called Noetherian if L

�[dH ](�) = 0
for all dH ∈ �∗. Call K ∈ � Hamiltonian if K = �[dH ] for some H ∈ F .

In the usual setting, F is the commutative algebra of (sufficiently well-
behaved, at least C1) scalar fields on manifold M, � the set of vector fields on M,
and �∗ the set of all (conventional) gradients, i.e., a proper subset of all continu-
ous linear local functionals on �. But Definition 2.3 allows for LK to operate also
nonlocally on F ; in fact, no underlying manifold is required at all as long as F ,
�, and LK satisfy algebraic conditions similar to conventional scalar/vector fields
and Lie derivatives on some M. Concerning the notion of a Noetherian operator:
Theorem 4.5 in Fuchssteiner (1992a) contains six equivalent characterizations
for antisymmetric linear θ : �∗ → � to satisfy this requirement. They reveal that
“loosely speaking, θ has the algebraic behavior of the inverse of a symplectic
operator” (Fuchssteiner, 1992a, p. 223). In other words: rather than imposing
(regularity and other) conditions on a (2, 0)-tensor ω such that K = ω−1[dH ],
the last part of Definition 2.3 considers K = θ [dH ] and imposes conditions on
the (0, 2)-tensor θ directly. It thus generalizes Equation (7) while avoiding ex-
plicit nondegeneracy requirements which, in infinite dimension, become subtly
ambiguous (injective/surjective/bijective) anyway. Relevance of these dramatic
generalizations is illustrated, among others by,7 the following

Theorem 2.4. Let K = �[dH ] ∈ � be Hamiltonian and I ∈ F s.t. dI [K] =
0 (i.e., an abstract conserved quantity). Then, G := �[dI ] ∈ � satisfies
|| K,G || = 0 (i.e., is an abstract symmetry).

Proof: See Theorem 3.3 in Fuchssteiner (1992a) or Appendix A.1 in quant-ph/
0210198. �

This gives late justification why the purely formal manipulations in Zakharov
and Faddeev (1971) actually did yield infinitely many conserved quantities in the
conventional sense. More precisely, Definition 2.3 and Theorem 2.4 permit to

7 For example, Observations 5.2 and 5.3 in Fuchssteiner (1992a) . . .
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separate algebraic conditions from analytic ones; the latter are, for the nonlinear
partial differential equations already mentioned, usually taken care of later by
choosing as manifoldM some appropriate function space with a suitable topology.

3. PHASE SPACE MANIFOLD OF HEISENBERG’S PICTURE

Consider a QM system with one spacial degree of freedom and let H denote
some infinite-dimensional separable Hilbert space. In Heisenberg’s picture, phase
space M consists of all pairs (Q, P) of self-adjoint operators on H satisfying, in
the sense of Weyl, the canonical commutation relation (1).

The below considerations are easily generalized to QM systems with f > 1
spacial degrees of freedom, where phase space consists of 2f -tuples (Q1, P1,
Q2, P2, . . . , Qf , Pf ) of self-adjoint operators satisfying

QkQl = QlQk, PkPl = PlPk, QkPl − PlQk = ihδkl. (10)

It is merely for notational convenience that in this section we will focus on the
case f = 1 and show how to turn the set M into a Banach manifold in the sense
of (Choquet-Bruhat et al., 1991, Section VII.A.1).

To this end recall von Neumann’s celebrated result that each such pair (Q, P)
is unitarily equivalent to a fixed pair (Q0, P0); cf. e.g. Theorem 4.3.1 in Putnam
(1967) or Theorem VIII.14 in Reed and Simon (1972):

Q = UQ0U
∗ ∧ P = UP0U

∗

for some unitary U. We explicitly disallow multiplicities/direct sums because
systems with one degree of freedom correspond to irreducible representations
of Schrödinger couples. Since conversely, every pair (UQ0U

∗, UP0U
∗) does sat-

isfy (1), it suffices to consider the set U(H) of all unitary operators on H. We
assert that this set actually indeed is a manifold.

Theorem 3.1. The set U(H) of unitary operators on a separable Hilbert space
H is a real C∞ Banach manifold.

Proof: See Section A.2 in the appendix. �

4. POLYNOMIALS IN OPERATOR-VARIABLES

In CM, the phase space7 manifold M consists of canonical position/
momentum variables (Q,P ), and the Hamilton function depends smoothly (say,
rationally or polynomially) on these variables.

In Heisenberg’s picture of QM, the phase space8 manifold M consists of
canonical position/momentum observables, that is, of tuples (Q, P) of self-adjoint

8 Of systems with one spacial degree of freedom.
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Hilbert space operators satisfying, in the sense of Weyl, commutation relations (1).
This time, the Hamilton function is an operator-valued function of such tuples
namely a Hamiltonian operator like H(Q, P) = Q4 + P2.

We will in the sequel focus on Hamiltonians depending polynomially on Q

and P, and the aim of this section is to make this notion mathematically sound.
In algebra, polynomials p ∈ C[Q,P ] in two variables are of course well-defined
objects. The following four definitions are known to be equivalent.

Definition 4.1. The set C[X1, . . . , Xm] of polynomials over C in m (commutat-
ing) variables are

(a) the free commutative C-algebra generated by {X1, . . . , Xm};
(b) the set of finite unbounded sequences (namely the coefficients preceding

monomials) with convolution as product;
(c) the smallest family of mappings p̂ : Cm → C containing constants and

projections (x1, . . . , xm) �→ xj and being closed under addition and multi-
plication;

(d) the collection of all differentiable mappings p̂ : Cm → C for which differ-
entiation is nilpotent, i.e., for some k, the k-th derivative vanishes.9

Although appropriate for classical (i.e., commuting) observables, this type of
polynomials however does not reflect the non-commutativity in general exhib-
ited by quantum observables. Instead consider a definition of polynomials in
noncommuting variables similar to (a):

Definition 4.2. The set C〈X1, . . . , Xm〉 of polynomials over C in non-commuting
variables is the free non-commutative (but associative and distributive) C-algebra
generated by {X1, . . . , Xm}. A monomial in C〈X1, . . . , Xm〉 of degree d is of the
form

∏d
n=1 Xkn

with k ∈ {1, . . . , m}d .
As each such polynomial is obviously a linear combination of finitely many

monomials and vice versa, one easily obtains an equivalent characterization in
terms of coefficient sequences similar to Definition 4.1(b); the convolution just
doesn’t look as nice any more. But how about analogues to (c) and (d), that is,
a way to identify polynomials with certain differentiable mappings on quantum
observables?

Of course for some C-algebra A—such as the set of self-adjoint linear oper-
ators on some Hilbert space—every p ∈ C〈X1, . . . , Xm〉 gives rise to a mapping
p̂ : Am → A where p̂(A1, . . . , Am) is defined by substituting Xj with Bj . But is
p̂ differentiable? Moreover, p �→ p̂ is a homomorphism; but in order to identify
p with p̂, this homomorphism should be injective! As one can easily imagine, this
heavily depends on A to be sufficiently rich; for example the two polynomials

9 Recall that, according to complex analysis, any differentiable function on C is necessarily C∞.
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in two non-commuting variables p, q ∈ C〈X, Y 〉 with p := X · Y and q := Y · X

differ whereas p̂ and q̂ agree on A := C. Similarly, p := (X · Y − Y · X)2 · Z

and q := Z · (X · Y − Y · X)2 from A := C〈X, Y,Z〉 satisfy, according to Hall’s
Identity, p̂ = q̂ on the algebra A of 2 × 2 matrices.

This section’s main result asserts that already the set of compact symmetric
linear operators on infinite-dimensional Hilbert space H is sufficiently rich to
identify polynomials with polynomial mappings. Furthermore on bounded linear
operators, these polynomial mappings are differentiable.

Theorem 4.3. Let H denote some separable infinite-dimensional Hilbert space,
p, q ∈ C〈X1, . . . , Xm〉.

(a) Let A be a set of linear operators on H containing at least the compact
symmetric ones. Then p̂

∣∣
Am = q̂

∣∣
Am implies p = q.

(b) Let B be the Banach algebra of bounded linear operators on H. Then
p̂ : Bm → B is differentiable.

(c) Its derivative p̂′(A1, . . . , Am)[V1, . . . , Vm] is the -̂transform of some
unique polynomial in 2 m non-commuting variables and thus differentiable
as well.

Proof: See Section A.3 in the appendix. �

We may thus—and will from now on—use polynomial (in non-commuting
variables) and polynomial mapping synonymously. By virtue of part (c),
every polynomial is C∞, and one may write p′(X1, . . . , Xm)[V1, . . . , Vm] ∈
C〈X1, . . . , Xm; V1, . . . , Vm〉 for the derivative of p ∈ C〈X1, . . . , Xm〉.

As next step one has to take into account the commutation relation (1) satis-
fies by quantum phase space observables. Indeed, the polynomials p := QP − PQ
and q := ih are different in C〈P,Q〉 whereas for position/momentum observ-
ables Q/P it holds QP − PQ = ih. One therefore wants to identify polynomials∑K

k=1 pk · (QP − PQ − ih) · qk in C〈Q,P 〉 with 0 while maintaining the structure
of an algebra such as being closed under addition and multiplication.

Fortunately, exactly this is offered by the quotient algebra

C〈Q,P 〉/J := {p/J : p ∈ C〈Q,P 〉}, p/J := {p + q : q ∈ J },
(p1/J ) + (p2/J ) · (p3/J ) := (p1 + p2 · p3)/J (11)

where J denotes some appropriate ideal. Recall that a (two-sided) ideal is a subset
of an algebra which is closed under addition and closed under multiplication
(both left and right) with arbitrary elements not only from J but from the whole
algebra. In our case, take the ideal spanned by QP − PQ − ih ∈ C〈Q,P 〉, that is,
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the smallest10 ideal containing QP − PQ − ih; explicitly:

J =
{

K∑
k=1

pk · (QP − PQ − ih) · qk : K ∈ N0, pk, qk ∈ C〈Q,P 〉
}

.

Considering C〈Q,P 〉/J rather than C〈Q,P 〉, it now holds QP − PQ = ih for
elements Q := Q/J and P := P/J . Let us abbreviate C〈Q, P〉 := C〈Q,P 〉/J
and remark that Q, P like Q,P ∈ C〈Q,P 〉, are in some sense not “variables” but
very specific and purely algebraic objects. On the other hand recall that by virtue
of the above considerations, each element H from C〈Q,P 〉/J does give rise to
and can be identified with a mapping Ĥ on the phase space manifold of all pairs
of quantum position/momentum observables. We are thus led to the following

Definition 4.4. The algebra F := C〈Q, P〉 is called the set of abstract scalar
fields on quantum phase space.

5. HAMILTONIAN HEISENBERG’S DYNAMICS

We will now use and extend the purely algebraic approach from Section 4 to
prove that the generator of Heisenberg’s dynamics is Hamiltonian in the sense of
Definition 2.3.

A first step, the set F of abstract scalar fields has already been introduced
in Definition 4.4. This formalized the class Hamiltonian operators of interest:
polynomials H = H(Q, P) in phase space variables (Q, P) = u. According to
Definition 2.3, next we need is a Lie algebra � to serve as (abstract) vector
fields, i.e., containing generators K = K(u) of a dynamics (2) on phase space
manifold M = {(Q, P) : QP − PQ = ih}. In order for corresponding flows t �→
u(t) = (

Q(t), P(t)
)

to stay on M, K = (KQ, KP ) must not alter commutation
relation (1), i.e.,

0
!= d

dt
0 = d

dt
(Q(t)P(t) − P(t)Q(t) − ih)

(∗)=
(

d

dt
Q(t)

)
P(t) + Q(t)

(
d

dt
P(t)

)
−
(

d

dt
P(t)

)
Q(t) − P(t)

(
d

dt
Q(t)

)
(2)= KQP + QKP − KP Q − PKQ = [KQ, P]− − [KP , Q]− (12)

where at (∗) we used the product rule of differentiation and exploited that h does
not vary over time. The algebraic excerpt of these considerations is subsumed in

Definition 5.1. The set of abstract vector fields on quantum phase space is

� = {K = (KQ, KP ) : KQ, KP ∈ C〈Q, P〉, [KQ, P]− = [KP , Q]− }
10 Reflecting that no other identifications than QP − PQ = ih are to be made. . .
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For K = (KQ/J ,KP /J ) ∈ � and H = H/J ∈ F with KQ,KP ,H ∈ C〈Q,P 〉,
LKH := (

H ′[(KQ,KP )]
)
/J ∈ F

denotes the Lie derivative of H with respect to K. Finally equip � with the bracket

|| K, G || := (
LKGQ − LGKQ, LKGP − LGKP

)
.

These structures indeed comply with the requirements in Definition 2.3:

Theorem 5.2. LKH in Definition 5.1 is well-defined. || ·, · || turns the vector fields
� into a Lie algebra. K �→ LK is an injective Lie algebra homomorphism.

Proof: See Section A.4 in the appendix. �

Remember our goal to find a Hamiltonian formulation for the generator
K := ( i

h
[Q, H]− , i

h
[P, H]− ) of Heisenberg’s dynamics on phase space (3). To

this end, one needs some Noetherian � : �∗ → � such that K as �[dH]. Com-
pare this to the situation in CM (4) where the generator is well-known (Abraham
and Marsden, 1978) to have a Hamiltonian formulation K = θ [dH ] by means

of θ := ( 0 +1
−1 0 ). Indeed when identifying gradients (i.e., covectors) with vec-

tors, θ is obviously linear, antisymmetric, and even constant hence LKθ = 0 for
any K . Moreover the well-known Darboux theorem states that conversely every

symplectic tensor on a 2f -dimensional manifold is of the form (
Of +If

−If Of

) at

least locally, where Of , If denote the 0 and identity (f × f )-matrix, respectively.
Of course on infinite-dimensional manifolds, covectors from �∗ cannot in

general be identified with vectors from �. But still the following consideration
conveys the idea that turns out to carry over to our algebraic setting where � :
�∗ → � need not be bijective. To this end observe that a two-dimensional covector
w∗ on R2, i.e., a linear function w∗ : R2 → R, is identified with a vector w ∈ R2 via

w = (
w∗[(1, 0)], w∗[(0, 1)]

) ∈ R2, i.e.,

by evaluating w∗ at arguments (1, 0) and (0, 1) forming the canonical basis for R2.

Definition 5.3. For abstract covector field W∗ ∈ �∗, let

�[W∗] :=
(

0 +1

−1 0

)
·
(

W∗[(1/J , 0/J )]

W∗[(0/J , 1/J )]

)
∈ �

Theorem 5.4. � : �∗ → � is well-defined and Noetherian. Furthermore for
each abstract scalar field H ∈ F , the (thus Hamiltonian) vector field �[dH]
coincides with K according to (3).
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Proof: See Section A.5 in the appendix. �

Although � resembles the classical θ , the proof in Appendix E proceeds
entirely different. In fact already the antisymmetry of � is far from obvious and
heavily relies on F being the quotient algebra with respect to J .

6. CONCLUSION

We showed that, for Hamiltonian operators that depend polynomially on
observables Q and P, Heisenberg’s dynamics on phase space is Hamiltonian at
least in an abstract algebraic sense. This constitutes an important step and in
fact can serve as a guide towards a Hamiltonian formulation of QM dynamics as
analytical flow on a concrete manifold like the one considered in Section 3. In
contrast to previous works, the nonlinearity of our approach gives, in connection
with Noether’s theorem, rise to interesting nontrivial symmetries which deserve
further investigation.

For ease of notation, the presentation focused on systems with f = 1 spa-
cial degree of freedom. In fact our considerations also apply to the general
case f ∈ N. Here, phase space M consists of all 2f -tuples of Cartesian po-
sition/momentum observables (Q1, P1, . . . , Qf , Pf ) satisfying commutation re-
lations (10). Correspondingly for the set of abstract scalar fields (polynomial
mappings on M), we now choose F = C〈Q1, P1, . . . , Qf , Pf 〉, i.e., the quotient
algebra C〈Q1, . . . , Pf 〉/J with respect to the ideal J spanned by

{QkQl − QlQk, PkPl − PlPk, QkPl − PlQk − ihδkl : 1 ≤ k, l ≤ f }.
Abstract covector fields K ∈ � thus become 2f -tuples K = (Kq1, . . . , Kpf ) s.t.

KqkQl + QkKql = QlKqk + KqlQk

KpkPl + PkKpl = PlKpk − KplPk

KqkPl + QkKpl = PlKqk − KplQk

 ∀1 ≤ k, l ≤ f

where again time-independence of Planck’s constant entered. Finally for W∗ ∈ �∗,

�[W∗] :=
(

Of +If

−If Of

)
·


W∗[(1/J , 0/J , . . . , 0/J )]

W∗[(0/J , 1/J , . . . , 0/J )]

...

W∗[(0/J , 0/J , . . . , 1/J )]

 ∈ �

is the abstract Noetherian tensor.
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A.1. Postponed Proof of Theorem 2.4

First notice that the gradient of a conserved quantity is an invariant covector
field:

dI [K] = 0 =⇒ LK (dI ) = 0.

Indeed for any G ∈ �,

LK (dI )[G]
(9)= LK (dI [G]︸ ︷︷ ︸

=LGI

) − dI [LKG︸ ︷︷ ︸
[[K,G]]

] = LKLGI − L|| K,G ||I
(8)= LG LKI︸︷︷︸

d=0

Thus, according to Observation 2.1 in Fuchssteiner (1992c),

|| K,G || = LK (θdI )
!= θLK (dI ) = 0.

A.2. Postponed Proof of Theorem 3.1

Let the reader be reminded that an operator U on H is called unitary iff it is
(a) linear and bounded, (b) invertible, and (c) satisfies UU∗ = I.

Now the set B(H) of all bounded linear operators on H is, equipped with
operator norm, of course a Banach algebra and thus in particular a (flat, C∞)
manifold. Similarly, the set S(H) of all symmetric bounded linear operators is
a (real!) Banach space and hence a manifold as well. Let B(H)+ denote the set
of invertible bounded linear operators. This subset is known to be open in B(H)
and therefore also constitutes a manifold, cf. e.g., Rudin (1991, Theorem 10.11);
similarly, S(H)+ is open in S(H) and therefore a manifold, too.

So it holds U(H) = f −1(I) for f : B(H)+ → S(H)+, A �→ AA∗. We are
going to show that f is in fact a submersion on U(H).

Definition A.2.1. Let X, Y denote Banach manifolds. Consider a C1 mapping
f : X → Y and S = f −1(c) ⊆ X for some c ∈ Y . Call f a submersion on S if for
all x ∈ S, f ′(x) : TxX → Tf (x)Y is surjective and has a complementable kernel.

Lemma A.2.2. In that case, S is a submanifold of X.

Proof: See page 550 in Choquet-Bruhat et al. (1991). �

Recall that a closed subspace M of a topological vector space E is called
complementable if there exists a closed subspace N of E such that E = M + N

and M ∩ N = {0}; cf. e.g. Rudin (1991, Definition 4.20).

Lemma A.2.3. f : B(H)+ → S(H)+, A �→ AA∗ is continuously differentiable
with derivative f ′(A)[V] = VA∗ + AV∗.
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For U ∈ U(H), the linear map f ′(U) : B(H) → S(H) is surjective; its ker-
nel N = {

B ∈ B(H) : UB∗ + BU∗ = 0
}

is complemented by M := {
B ∈ B(H) :

UB∗ − BU∗ = 0
}
.

Proof: Straight-forward calculation yields differentiability of f :

f (A + V) − f (A) − (VA∗ + AV∗) = VV∗

tends to 0 as V → 0, even when divided by ‖V‖.
For S ∈ S(H), let V := 1

2 SU ∈ B(H). Then, using V∗ = 1
2 U∗S∗, S∗ = S, and

UU∗ = I, it follows that f ′(U)[V] = S; hence f ′(U) is surjective.
N ∩ M = {0} is trivial. To show N + M = B(H), consider B ∈ B(H); now

verify that (B − UB∗U)/2 ∈ N and (B + UB∗U)/2 ∈ M . Since the sum of both
yields B, this concludes the proof. �

A.3. Postponed Proof of Theorem 4.3

For (a) one may presume w.l.o.g. that q = 0. Let d denote the degree of
p �= 0. According to, e.g., Ma and Racine (1990) there exist symmetric (� d

2 + 1�
× � d

2 + 1�)-matrices11 matrices A1, . . . , Am such that p̂(A1, . . . , Am) �= 0. By
extending the linear mappings Aj from C�d/2+1� to H, the obtained symmetric
compact operators still satisfy p̂(A1, . . . , Am) �= 0.

For (b) and (c), we are going to algebraically define a mapping C〈 �X〉 � p �→
p′ ∈ C〈 �X; �V 〉 and verify that its image under̂coincides with the derivative of p̂.
As the latter is unique on Hausdorff spaces, this proves the claim.

Definition A.3.1. Write �X = (X1, . . . , Xm) and �V = (V1, . . . , Vm). For mono-
mial p = ∏d

n=1 Xkn
∈ C〈 �X〉, its partial derivative with respect to Xl is given by

∂p

∂Xl

[Vl] :=
∑

n:kn=l

(∏
s<n

Xks

)
· Vl ·

(∏
s>n

Xks

)
∈ C〈 �X; Vl〉

The partial derivative of a linear combination of monomials is the linear
combination of their respective partial derivatives. The derivative and second
derivative of a polynomial p = p( �X) ∈ C〈 �X〉 are given by

p′ = p′( �X)[ �V ] = p′[ �V ] :=
m∑

l=1

∂p

∂Xl

[Vl] ∈ C〈 �X; �V 〉

p′′( �X)[ �V , �W ] :=
m∑

l=1

∂

∂Xl

(p′( �X)[ �V ])[Wl] ∈ C〈 �X; �V , �W 〉

respectively.

11 The famous Amitsur–Levitzki-Theorem states that this matrix dimension is in fact optimal.
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It’s easy to verify the following properties:

Lemma A.3.2. Let p, q ∈ C〈 �X〉, α ∈ C.

(a) Linearity

(αp + q)′( �X)[ �V ] = αp′( �X)[ �V ] + q ′( �X)[ �V ]

(b) Non-commutative product rule

(p · q)′( �X)[ �V ] = p( �X)[ �V ] · q ′( �X) + q ′( �X)[ �V ] · q( �X)

(c) Symmetry of second derivatives p′′[ �V , �W ] = p′′[ �W, �V ]
(d) Chain rule: Let �q = (q1, . . . , qm) ∈ C〈 �X〉m. Then

p(�q( �X))′[ �V ] = p′(�q( �X))[�q ′( �X)[ �V ]]

with �q ′ = (q ′
1, . . . , q

′
m). In particular,

(p′[�q])′[ �V ] = p′′[�q, �V ] + p′[�q ′[ �V ]]. (A.1)

The first two items say that p �→ p′ is sort of a derivation. Now finally
coming to Claims (b) and (c), it suffices to consider monomials; the rest follows
from linearity of differentiation.

Let us first remark that the -̂transform of each polynomial p is a contin-
uous map p̂ : Bm → B. Indeed, p is a finite linear combination of products of
projections (A1, . . . , Am) �→ Aj ; the latter are continuous, and so are products of
continuous functions because the operator norm ‖ · ‖ on B is submultiplicative.

The proof that p̂ : Bm → B is differentiable for every monomial p ∈ C〈 �X〉
proceeds by easy induction on the degree d of p, being obvious for d ≤ 1. For
induction step d �→ d + 1 let p · q be the product of two monomials p, q of
degree at most d each. By induction hypothesis, both p̂ and q̂ are differentiable
with respective directional derivatives p̂′( �A)[ �V] and q̂ ′( �A)[ �V], �A, �V ∈ Bm. Recall
that this means that p̂(A + V) − p̂(A) − p̂′(A)[V] tends to 0 even when divided by
‖V‖ → 0 and similarly for q̂. We want to show that p̂ · q ′ + p̂′ · q is the derivative
of p̂ · q. Because of p̂ · q = p̂ · q̂, it indeed follows

p̂ · q(A + V) − p̂ · q(A) − p̂′(A)[V] · q̂(A + V) − p̂(A) · q̂ ′(A)[V]

= (p̂(A + V) − p̂(A) − p̂′(A)[V])︸ ︷︷ ︸
•/‖V‖→0 as V→0

· q̂(A + V)︸ ︷︷ ︸
→q̂(A) as V→0

+ p̂(A)

× (q̂(A + V) − q̂(A) − q̂ ′(A)[V])︸ ︷︷ ︸
•/‖V‖→0 as V→0

since q̂ is continuous. As ‖ · ‖ satisfies subadditivity and submultiplicativity, not
only the indicated factors but the whole expression tends to 0 even when divided by
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‖V‖ → 0. This shows that p · q is differentiable and its derivative is thê -transform
of p( �X) · q ′( �X)[ �V ] + p′( �X)[ �V ] · q( �X) ∈ C〈 �X; �V 〉 which completes the induction
step and eventually proves Claims (b) and (c). �

A.4. Postponed Proof of Theorem 5.2

Remember that, for a (two-sided) idealJ in some (non-commutative) algebra
A, the relation A h≡ B :⇔ A − B ∈ J satisfies

A h≡ B ⇒ A + C h≡ B + C ∧ A · C h≡ B · C ∧ C · A h≡ C · B

for A,B,C ∈ A. Equivalently: (11) is well-defined. A representative for A ∈
A/J is some A ∈ A such that A = A/J

Well-definition of LKH means independence of the representatives H ∈
C〈Q,P 〉 for H ∈ C〈Q, P〉 and similarly (KQ,KP ) = �K for (KQ, KP ) = K ∈ �.
So suppose H = 0 and we have to show that H ′[(KQ,KP )] h≡ 0 for each H h≡ 0. In-
deed linearity allows to presume w.l.o.g. H = p · (QP − PQ − ih) · q for some
p, q ∈ C〈Q,P 〉. Then Lemma A.3.2b) yields H ′[ �K]

= p′[ �K] · (QP − PQ − ih) · q︸ ︷︷ ︸
h≡0

+p · (QP − PQ − ih)′[ �K]︸ ︷︷ ︸
=KQP+QKP −KPQ−PKQ

·q

+ p · (QP − PQ − ih) · q ′[ �K]︸ ︷︷ ︸
h≡0

and the middle term is h≡ 0 as well because (KQ,KP ), being a representative for
(KQ, KP ) ∈ �, satisfies [KQ,P ]− + [Q,KP ]− h≡ 0 according to Definition 5.1.

Derivatives in direction of vector fields thus basically ‘commute’ with taking
factors w.r.t. J :

(H/J )′[ �K/J ] = (
H ′[ �K]

)
/J for ( �K)/J ∈ �

For partial derivatives, this does in general not hold: Take H1 := QP − PQ,
H2 = ih, and V := Q; then H1/J = H2/J but(

∂H1

∂Q
[V ]

)
/J = (QP − PQ)/J = (ih)/J �= 0/J =

(
∂H2

∂Q
[V ]

)
/J .

If however VP ≡ PV , then (V, 0)/J belongs to � and ( ∂H
∂Q

[V ])/J =
(H ′[(V, 0)])/J is independent of H as some representative for H/J ; same for
( ∂H

∂P
[V ])/J = (H ′[(0, V )])/J whenever VQ ≡ QV . In particular for V = 1, we

therefore have
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Lemma A.4.1. Let H ∈ F with H = H/J . Then

∂H

∂Q
:=

(
∂H

∂Q
[1]

)
/J ,

∂H

∂P
:=

(
∂H

∂P
[1]

)
/J

is well-defined. Furthermore it holds

i

h
[H, Q]− = +∂H

∂P
,

i

h
[H, P]− = −∂H

∂Q
(A.2)

Condition (12) for (KQ, KP ) ∈ � may thus be rewritten as

∂KQ

∂Q
= −∂KP

∂P

which resembles the Cauchy–Riemann equation for the complex function f (q +
ip) = kq(q, p) − ikp(q, p) to be differentiable.
Proof of Lemma A.4.1: Let H = H/J ∈ F . For linearity reasons, it suffices to
prove i

h
[H, Q]− = ∂H

∂P
for monomials H . We proceed by induction on the degree

of H , cases H = 1, H = Q, and H = P being obvious. So let H = H1 · H2 with
monomials H1,H2 of lower degree, H1 = H1/J , H2 = H2/J . Then

∂H

∂P
=
(

∂(H1 · H2)

∂P
[1]

)
/J

A.3.2b=
(

∂H1

∂P
[1] · H2 + H1 · ∂H2

∂P
[1]

)
/J (11)= ∂H1

P
· H2 + H1 · ∂H2

P

(∗)= i

h
[H1, Q]− · H2 + H1 · i

h
[H2, Q]− = i

h
[H1 · H2, Q]−

where at (∗) the inductive presumption entered. �

Next claim is that || K, G || belongs to � for K, G ∈ �. To this end, take
corresponding representatives (KQ,KP ) and (GQ,GP )—which ones doesn’t
matter as we have just shown—and verify that the representative

(
G′

Q[K] −
K ′

Q[G],G′
P [K] − K ′

P [G]
)

for || K, G || satisfies[
G′

Q[K] − K ′
Q[G], P

]
−

] + [
Q,G′

P [K] − K ′
P [G]

]
−

A.3.1=
[
∂GQ

∂Q
[KQ], P

]
−

+
[
∂GQ

∂P
[KP ], P

]
−

−
[
∂KQ

∂Q
[GQ], P

]
−

−
[
∂KQ

∂P
[GP ], P

]
−

+
[
Q,

∂GP

∂Q
[KQ]

]
−

+
[
Q,

∂GP

∂P
[KP ]

]
−

−
[
Q,

∂KP

∂Q
[GQ]

]
−
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−
[
Q,

∂KP

∂P
[GP ]

]
−

A.3.2b= ∂

∂Q
( [GQ,P ]− )[KQ] + ∂

∂P
( [GQ,P ]− )[KP ] − [GQ,KP ]−

− ∂

∂Q
( [KQ,P ]− )[GQ] − ∂

∂P
( [KQ,P ]− )[GP ] + [KQ,GP ]−

+ ∂

∂Q
( [Q,GP ]− )[KQ] − [KQ,GP ]− + ∂

∂P
( [Q,GP ]− )[KP ]

− ∂

∂Q
( [Q,KP ]− )[GQ] + [GQ,KP ]− − ∂

∂P
( [Q,KP ]− )[GP ]

A.3.2a= ∂

∂Q
( [GQ,P ]− + [Q,GP ]− )[KQ] + ∂

∂P
( [GQ,P ]− + [Q,GP ]− )[KP ]

− ∂

∂Q
( [KQ,P ]− + [Q,KP ]− )[GQ] − ∂

∂P
( [KQ,P ]− + [Q,KP ]− )[GP ]

A.3.1= ( [GQ,P ]− + [Q,GP ]−︸ ︷︷ ︸
h≡0

)′[K] − ( [KQ,P ]− + [Q,KP ]−︸ ︷︷ ︸
h≡0

)′[G] h≡ 0.

Indeed, Lemma A.3.2b) implies

∂

∂Q
[A,B]− [V ] =

[
∂A

∂Q
[V ], B

]
−

+
[
A,

∂B

∂Q
[V ]

]
−

and for B = Q, the last term is equal to [A,V ]− whereas it vanishes for B = P .
The mapping �iK �→ LK is a Lie algebra homomorphism because, for K =

K/J , G = G/J ∈ �, and H = H/J ∈ F ,

LKLG − LGLK : H �→ ((H ′[G])′[K] − (H ′[K])′[G])/J
A.3.2d=
(A.1)

(H ′′[G,K] + H ′[G′[K]] − H ′′[K,G] − H ′[K ′[G]])/J

A.3.2=
a+c

(H ′[G′[K] − K ′[G]])/J = L|| K,G ||H.

This is furthermore injective as can be seen by evaluating LKH =G H on
H := Q and on H := P. In particular, || · , · || satisfies antisymmetry and Jacobi’s
identity.
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A.5. Postponed Proof of Theorem 5.4

Let us first emphasize the importance of ideal J by omitting it, that is, by
considering

�̃[W ∗] :=
(

0 +1

−1 0

)
·
(

W ∗[(1, 0)]

W ∗[(0, 1)]

)
on F̃ = C〈Q,P 〉.

This linear mapping from �̃∗ → �̃ is, in spite of its suggestive writing, not even
antisymmetric: For H := Q2 ∈ F̃ and F := PQP ∈ F̃ ,

dF [�̃[dH ]] + dH [�̃[dF ]] = dF [(0,−2Q)] + dH [(QP + PQ,−P 2)]

= (−2Q2P − 2PQ2) + (Q(QP + PQ) + (QP + PQ)Q)

= 2QPQ − Q2P − PQ2 �= 0.

Now returning to the proof of Theorem 5.4, W∗[(1/J , 0/J )] is well-defined
because K = (1/J , 0/J ) satisfies [KQ, P] = [KP , Q], thus belongs to � on
which W∗ : � → F operates.

Next we exploit that according to Definition 2.3., �∗ consists of abstract
gradients (i.e., closed covector fields) only. Namely to show �[dH] ∈ �, take
H = H/J and compute for K = (KQ,KP ) := �̃[dH ]

[KQ,P ]− + [Q,KP ]− =
[
∂H

∂P
[1], P

]
−

−
[
Q,

∂H

∂Q
[1]

]
−

A.4.1
h≡

[ i

h
[H,Q]− , P

]
−

+
[
Q,

i

h
[H,P ]−

]
−

(∗)= −
[ i

h
[Q,P ]− ,H

]
−

h≡ [1,H ]− = 0

where at (∗), Jacobi’s identity was used:

[ [A,B]− , C]− + [ [B,C]− , A]− + [ [B,A]− , C]− = 0.

� obviously satisfies linearity; for proving that it is furthermore antisymmet-
ric and Noetherian, the following tool turns out to be quite useful:

Proposition A.5.1. For m, n,M,N ∈ N0, α, β ∈ C, A := αP mQn and B :=
βP MQN satisfy

∂A

∂Q

[
∂B

∂P
[1]

]
h≡ ∂B

∂P

[
∂A

∂Q
[1]

]
.

Notice that both terms in general coincide only with respect to the relation
h≡ induced by identifying QP − PQ with ih; consider, e.g., A = Q2 and B = P 3.
Furthermore, the particular form of A and B (with all P ’s to the left and Qs to the
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right) is important; consider, e.g., A = Q2 and B = PQP . The latter results from
the fact that, say, ∂B

∂P
[1] is usually not the (representative of the) first component

of a vector field and thus partial derivative ∂A
∂Q

in this direction not necessarily
independent of changing representatives for A.

Nevertheless, Proposition E.1 helps calculating, for F, H ∈ F , dF[�[dH]] +
dH[�[dF]] = 0. Indeed, one may presume w.l.o.g. that F = F/J and H = H/J
for F = P mQn and H = P MQN because of (bi-)linearity and since every mono-
mial in H can be brought to this form; cf. Lemma A.6.1. Then,

dF[�[dH]] + dH[�[dF]]

5.3= ∂F

∂Q

[
∂H

∂P
[1]

]
/J − ∂F

∂P

[
∂H

∂Q
[1]

]
/J

+ ∂H

∂Q

[
∂F

∂Q
[1]

]
/J − ∂H

∂P

[
∂F

∂P
[1]

]
/J

A.5.1= 0 + 0.

We now prove that the generalization of usual Poisson brackets

(F, H) �→ dH[�dF]

turns the abstract scalar fields into a Lie algebra. According to Fuchssteiner (1992a,
Theorem 4.5), this is equivalent (among others) to � being Noetherian and fur-
thermore to

�d[dH[�dF]] = ||�dF,�dH ||
for all closed covectors dF, dH ∈ �∗; cf. Eq. (2.10) in Fuchssteiner (1993). So let,
again without loss of generality, F = F/J and H = H/J with F = P mQn and
H = P MQN . Consider A := ∂H

∂Q
[ ∂F
∂P

[1]] − ∂H
∂P

[ ∂F
∂Q

[1]], that is, A/J = dH[�dF];
then the first component of (KQ, KP ) = �d[dH[�dF]] equals

KQ
5.3= ∂

∂P
A[1]/J

A.3.2d=
(A.1)

∂2H

∂P∂Q

[
1,

∂F

∂P
[1]

]
/J + ∂H

∂P

[
∂

∂Q

(
∂F

∂P
[1]

)
[1]

]
/J

− ∂2H

∂P∂P

[
1,

∂F

∂Q
[1]

]
/J − ∂H

∂P

[
∂

∂P

(
∂F

∂Q
[1]

)
[1]

]
/J

(∗)= ∂

∂Q

(
∂H

∂P
[1]

)[
∂F

∂P
[1]

]
/J + ∂H

∂Q

[
∂

∂P

(
∂F

∂P
[1]

)
︸ ︷︷ ︸

=mP m−1Qn=:B

[1]

]
/J
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− ∂

∂P

(
∂H

∂P
[1]

)[
∂F

∂Q
[1]

]
/J − ∂H

∂P

[
∂

∂Q

(
∂F

∂P
[1]

)
︸ ︷︷ ︸

=B

[1]

]
/J

A.5.1= ∂

∂Q

(
∂H

∂P
[1]

)[
∂F

∂P
[1]

]
/J + ∂

∂P

(
∂F

∂P
[1]

)[
∂H

∂Q
[1]

]
/J

− ∂

∂P

(
∂H

∂P
[1]

)[
∂F

∂Q
[1]

]
/J − ∂

∂Q

(
∂F

∂P
[1]

)[
∂H

∂P
[1]

]
/J

5.3=
(

∂H

∂P
[1]

)′
[�dF] −

(
∂F

∂P
[1]

)′
[�dH]

which is the first component of ||�[dF],�[dH] ||; that second components agree
as well can be verified quite similarly. Let us emphasize that at (∗), we used

∂

∂Xk

(
∂H

∂Xl

[1]

)
[V ]

A.3.2d=
(A.1)

∂2H

∂Xk∂Xl

[V, 1] +
(

∂H

∂Xl

[1]

)′ [
∂1

∂Xk

[V ]︸ ︷︷ ︸
=0

]

for H,V ∈ C〈X1, . . . , Xm〉.
That �[dH] agrees with K according to (3) follows from Lemma A.4.1.

A.6. Postponed Proof of Proposition A.5.1

First thing to notice is that because of linearity, one may presume α = β = 1.
Next, the claim follows from A = Qn and B = P M via induction. Indeed,

once it holds for A and B, we have for B̃ = B · Q:

∂(B · Q)

∂P

[
∂A

∂Q
[1]

]
A.3.2b= ∂B

∂P

[
∂A

∂Q
[1]

]
· Q

I.H.
h≡ ∂A

∂Q

[
∂B

∂P
[1]

]
· Q

(∗)= ∂A

∂Q

[
∂B

∂P
[1] · Q

]
where at (∗) we used

∂A

∂Q
[H · Q]

A.3.1=
n∑

k=1

P mQk−1(H · Q)Qn−k︸ ︷︷ ︸
=Qn−k ·Q

=
n∑

k=1

P mQk−1HQn−k · Q

= ∂A

∂Q
[H ] · Q;

the induction step proceeds similarly for Ã = P · A.
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It thus remains to prove

∂(Qn)

∂Q
[m · P m−1] h≡ ∂(P m)

∂P
[n · Qn−1] (A.3)

for any n,m ∈ N. To this end, we need the commutation properties of Qn and Pm.
For n = 1 = m, they are revealed by (1); and based on that, induction yields:

Lemma A.6.1. Consider Qn, Pm ∈ F . Then

QnP − PQn = nhiQn−1, QPm − PmQ = mhiPm−1,

QnPm − PmQn =
min(n,m)∑

r=1

(
m

r

)(
n

r

)
r!(ih)rPm−rQn−r

With the agreement that
(
k

r

) = 0 for k < r , we may omit the minimum and
let the sum range up to n or to m whatever seems preferable. Now turning to the
proof of (A.3):

∂(Qn)

∂Q
[m · P m−1] − ∂(P m)

∂P
[n · Qn−1]

= m

n∑
k=1

Qk−1P m−1︸ ︷︷ ︸
h≡F.1

P m−1Qk−1 + ∑m−1
r=1

(
m−1

r

)(
k−1
r

)
r!(ih)rP m−1−rQk−1−r

Qn−k

− n

m∑
l=1

P l−1 Qn−1P m−l︸ ︷︷ ︸
h≡A.6.1

P m−lQn−1 + ∑n−1
s=1

(
n−1

s

)(
m−l

s

)
s!(ih)sP m−l−sQn−1−s

h≡ m

n∑
k=1

P m−1Qn−1 − n

m∑
l=1

P m−1Qn−1

︸ ︷︷ ︸
=0

+ m

m−1∑
r=1

n∑
k=1

(
m − 1

r

)(
k − 1

r

)
r!(ih)rP m−1−rQn−1−r

− n

n−1∑
s=1

m∑
l=1

(
n − 1

s

)(
m − l

s

)
s!(ih)sP m−1−sQn−1−s .

Here, both sum ranges for r and s may be cut off at min(m − 1, n − 1) since for
higher indices, the corresponding binomial coefficients are 0 anyway. Collecting
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term thus yields
min(n,m)−1∑
t=1

(
m ·

(
m − 1

t

) n∑
k=1

(
k − 1

t

)

− n ·
(

n − 1

s

) m∑
l=1

(
m − l

t

))
t!(ih)tP m−1−tQn−1−t

which vanishes because the well-known properties of binomial coefficients

J∑
j=0

(
j

N

)
(∗)=

(
J + 1

N + 1

)
and

(
J

N

)
=
(∗)

J

N
·
(

J − 1

N − 1

)
yield

m ·
(

m − 1

t

) n∑
k=1

(
k − 1

t

)
(∗)= m ·

(
m − 1

t

)
·
(

n

t + 1

)

=
(∗)

m ·
(

m − 1

t

)
· n

t + 1
·
(

n − 1

t

)

n ·
(

n − 1

t

) m∑
l=1

(
m − l

t

)
(∗)= n ·

(
n − 1

t

)
·
(

m

t + 1

)

=
(∗)

n ·
(

n − 1

t

)
· m

t + 1
·
(

m − 1

t

)
. �
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